
Process...Modeling...EA Repository
Development

Table of contents

1 EA Repository Development... 2

1.1 EA Repository Introduction.. 2

1.2 EA Information Capture, Management, and Delivery.. 3

1.3 CaliberRM Mechanisms..4

1.3.1 Basic Mechanisms...5

1.3.2 Utilities..6

1.3.3 Built-in Properties...7

1.3.4 User-Extended Properties... 7

1.3.5 Data Management... 8

1.4 Referencing External Mandates.. 8

Copyright © All rights reserved.

1. EA Repository Development

1.1. EA Repository Introduction

The following graphic illustrates the central role the EA repository plays in the VA Enterprise
Architecture.

EA information is collected from various business and project source documents. The collected
information is filtered for artifacts relevant to the VA Enterprise Architecture, normalized, and
imported into the repository. The repository is being implemented as a centralized database
server using the Borland CaliberRM. The data in the repository is structured according to the
Zachman Framework and the primitive models that have been developed for each cell. Original
source documents are stored on the centralized server so they can be referenced from either the
EA repository or from the generated models (Metis) and web pages (Forrest). EA artifacts in the

Process...Modeling...EA Repository Development

Page 2
Copyright © All rights reserved.

repository are converted to a XML representation that is imported into Metis and Forrest. The
EA has many potential VA users that will be served by the information generated for Metis and
Forrest from CaliberRM XML data.

Additional information on the repository is in the following web pages: EA Information
Capture, Management, and Delivery; CaliberRM Mechanisms; and, Referencing External
Mandates.

1.2. EA Information Capture, Management, and Delivery

The VA Enterprise Architecture 3.0 (and later) will be represented by set of interrelated EA
artifacts that reflect the real VA enterprise. An accurate and detailed representation of the
enterprise will require the capture of thousands of artifacts, management of the resulting data set
and the delivery of the managed artifacts to web-based graphical modeling tools and generated
web pages. The following graphic presents some of the details of the required processes.

Process...Modeling...EA Repository Development

Page 3
Copyright © All rights reserved.

Document capture occurs in the two left-most stages. EA information is contained in a wide
variety of source documents (mainly, but not exclusively, Word and PDF). Source documents
include previous versions of the EA, external government mandates, internal VA policies and
plans, and various project documents and databases.

The individual EA artifacts contained in these sources are captured in intermediate documents
such as spreadsheets and tables. This phase involves the identification of EA artifacts, the
partitioning of the information guided by the rules of the Zachman Framework, removal of
redundant artifacts, and the identification of relationships between artifacts. The driving
requirements for the capture process include:

1. Information capture must be complete.
2. Redundant information should be reduced.
3. Information should be partitioned and organized according to the rules of the Zachman

Framework, as slightly modified by the VA Office of EA Management (OEAM).
4. The process must organize the Caliber information so that it directly supports the required

visual models.
5. Relationships between artifacts should be retained (e.g., the relationship between things and

activities).
6. The capture process must be easily reproducible.
7. The capture process must be efficient (although every artifact must be separately considered

and verified).
8. The process must validate the final result to ensure that inaccuracies are minimized.

Captured EA artifacts are managed in a CaliberRM repository. This
requirements/object-oriented database is perfect for managing individual artifacts. For example,
CaliberRM requirements types are used classify artifacts according to the Zachman Framework.
CaliberRM traces are used to relate artifacts as required. External reference capabilities are used
to access external source documents. A complete list of how CaliberRM mechanisms are used to
manage EA artifacts can be found under CaliberRM Mechanisms. Management also includes
checking the artifacts and their relationships for quality (accuracy to the real world and internal
consistency).

The EA artifacts are currently delivered to the user via the Metis modeling and Forrest web
document tools. In fact, the EA approach is as open as technology will allow. The export from
CaliberRM is packaged as XMI-standard XML. This XML stream is interfaced to Metis and
Forrest to produce graphical and textual web pages. All the core data exists in the CaliberRM
repository or in the interfaces between CaliberRM and Metis or Forrest. If requirements so
dictate, it will be possible to replace these tools in the future and simply regenerate the output
using the XML stream.

1.3. CaliberRM Mechanisms

Process...Modeling...EA Repository Development

Page 4
Copyright © All rights reserved.

Here is a summary of generic CaliberRM mechanisms that support EA modeling. The EA can
use the capabilities represented by these mechanisms in most end-user reporting or modeling
tools (via the internally developed XML interface). Some mechanisms did not make the list
since we are not currently planning to make use of them.

To simplify this discussion, CaliberRM mechanisms are partitioned into the subsections below.

Reference(s):

• CaliberRM Mechanisms.pdf

1.3.1. Basic Mechanisms

Basic CaliberRM mechanisms represent indispensable capabilities required by every EA author.

1. Requirement Types – Document chapters and Zachman cells are organized by requirement
type. This organization is useful since it is possible to create special properties to support
different models in each cell. It is also possible to set security differently for each chapter or
cell. Reporting by requirement type is much easier. In short, requirement types have made it
possible to apply divide and conquer to a massive task.

2. CaliberRM Requirements – The basic information in a requirement is its name and
description. This simple arrangement makes it possible to interpret a CaliberRM requirement
as a generic enterprise architectural object. We have added an “object type” property to each
object in order to support modeling tools that import CaliberRM XML data. Requirement
descriptions retain original HTML formatting and image information that can be used by
other modeling products.

3. Nested Requirements – CaliberRM leverages a parent-child relationship to construct a
hierarchy of requirements within each requirement type. The current Metis XML interface
transforms the context-sensitive hierarchical information encoded in CaliberRM to either
Metis containers or Metis hierarchies.

4. Internal Traceability – CaliberRM provides the ability to trace from one object to another.
For example, the architecture model contains traces from standard FEA functions to VA
internal functions. This tracing puts VA activities into the wider Federal Government
context without interfering with the VA-specific functional hierarchy. The tracings have
direction (from or to the object) but no other properties (such as type, name, or function).

5. External References – CaliberRM offers three types of external references. (1) Text
references are stored in CaliberRM. They provide a mechanism for comments on the object
that need not appear in the description. (2) File references can reference files accessible
from the client workstation. (3) Web references address objects via URL, making it possible
to access them anywhere on the internet or intranet. EA 3.0 uses web references to maintain
a controlled set of associated files on the CaliberRM server host.

6. Shared Requirements – Although EA 3.0 is normalizing its data, it is sometimes necessary

Process...Modeling...EA Repository Development

Page 5
Copyright © All rights reserved.

to reuse model objects. For example, some cells share the same taxonomy (the same object
hierarchy). CaliberRM provides the capability to share the information between common
objects. This means that the sharing object displays description information in the shared
object, but cannot change it. Thus, EA 3.0 manages the descriptions of shared objects in only
one place.

1.3.2. Utilities

The CaliberRM utilities are essential supplementary applications that support the authoring
process.

1. Glossaries – CaliberRM provides the ability to import and manage project glossaries. The
import uses a CaliberRM-specific XML-based glossary structure. Once in place, CaliberRM
highlights and defines glossary words in the description on mouse-over. We need to
determine if we can export the glossary to external models such as Metis or Borland OLAP
(On-Line Analytical Processing). One curious issue is that glossary items are not case
sensitive. This means that CaliberRM treats “of” as an acronym if “OF” (Optional Form) is
in the glossary.

2. Requirement Grid – CaliberRM tends to view and update one requirement (object) at a
time. The requirements grid is a handy utility to view and update requirements in bulk. Its
minor query capability is used to filter requirements within a requirement type or a branch of
the requirement hierarchy. Some of the displayed object parameters cannot be updated, but
some can be bulk updated; most importantly, that includes requirement built-in and
user-extended properties.

3. Import from Microsoft Word – CaliberRM provides a wizard to import requirements from
Microsoft Word. Note that it is currently the only available import path. Although it does
not allow updates, the wizard is simple to use and very effective. Word styles distinguish
between requirement names and descriptions. CaliberRM treats header styles in a
hierarchical fashion, making it possible to import complex hierarchies. The wizard offers a
visual quality check before performing the actual import. Unfortunately, there is no way to
import corresponding traces, external references, properties, etc. We are exploring, with
Borland, the possibility of an XML-based import interface that might overcome these
limitations.

4. Export to Microsoft Access – CaliberRM provides a wizard to export a project from its
object-oriented database to an Access relational database. Most of the CaliberRM
object-oriented database is unwound into a set of tables with primary and foreign key
constraints. Oddly, the relational schema does not include a relationship between
requirement type and the requirements that use that type. However, if we define unique
requirement type tags, we can use that tag to select the desired requirement set. The Access
database provides a lot of flexibility for database reports that are necessary to manage a large
set of complex data. For example, we can produce requirement-level reports on properties,
traces, and security, and we can use them to verify the data quality. External references and

Process...Modeling...EA Repository Development

Page 6
Copyright © All rights reserved.

version history information are not included in the export.
5. External Traceability – We plan to collect all essential enterprise data needed to describe

the VA architecture. However, some detailed data is better left in the builders or managers
format. Typical formats include Microsoft Project, Erwin, Oracle Designer, Rational Rose,
etc. In an ideal world, we would be able to trace from CaliberRM objects into these
“external” object sets. Currently, CaliberRM only provides external traceability via a
Microsoft Project “plug-in”. This will provide traceability from EA 3.0 events directly to
Project schedule items.

1.3.3. Built-in Properties

Built-in CaliberRM properties add important specialized information to every EA artifact.

1. System Attributes – CaliberRM system attributes are user-extensible. Two of these are
relevant to EA 3.0:
1. Requirement Status – Factory settings are Submitted, Pending, Accepted, Draft, and

Deferred. EA 3.0 initial input defaults to Submitted. We can add additional status
choices as required.

2. Requirement Priority – Factory settings are Essential, Useful, Desirable, and
Unassigned. EA 3.0 initial input defaults to Unassigned. We can add additional
priorities as required.

2. Requirement Owner – Caliber requirement (object) owners are the only persons that can
update the requirement. The CaliberRM administrator can assign requirement ownership to a
group of persons.

3. Requirement Version – CaliberRM faithfully records every requirement (object) change as
an internal version. It is possible select a previous version so you can see the change. In
addition, CaliberRM will provide a complete report for any requirement with a previous
version.

4. Requirement Tag – The CaliberRM tag uniquely identifies a requirement type. CaliberRM
combines the Tag with a sequence number to create a unique requirement tag for every
requirement (object). CaliberRM also maintains a unique internal requirement identifier that
the EA 3.0 XML interface uses to tag objects for the Metis model.

1.3.4. User-Extended Properties

The CaliberRM mechanisms provide for additional user-extended properties. These extensions
are essential for encoding EA modeling information in every EA artifact.

1. Internal Only – We maintain this flag to indicate that a requirement (object) is not ready for
general use. For example, if this binary flag is on (the default), the object will not be
included in the current model.

2. Procurement Sensitive – Even if the Internal Only flag is off, only selected VA staff will be
able to see an object if is marked procurement sensitive.

Process...Modeling...EA Repository Development

Page 7
Copyright © All rights reserved.

3. Internal Version – This number is the working version of the architecture.
4. Source – We track the original source for the object using a single-selection drop-down list.

As we acquire new sources, we add them to the list. It is an important step in the bulk load
process to update this property.

5. Object Type – We assign the object type from a single-selection drop-down list according to
the EA 3.0 Zachman Framework-based model. The XML interface transmits the object type
to the Metis model where it labels the model object or provides an appropriate icon.

1.3.5. Data Management

The trusted, efficient management of a large set of EA artifacts is the most important
requirement satisfied by CaliberRM. The underlying object-oriented database provides critical
mechanisms that satisfy this requirement.

1. Requirement Locking – CaliberRM runs on a centralized server. Proprietary CaliberRM
clients access the server using proprietary application protocols over the network. The
multi-user server uses a locking mechanism to avoid race conditions on a requirement.
When a user starts an update of any requirement information (name, description, property,
trace … whatever) the requirement is locked against updates by others. As soon as the user
saves the update, it is made available for access by others. If they are out-of-synch,
CaliberRM refreshes the view to reflect the update. All in all, a tidy way to manage the data.

2. Requirement History – CaliberRM maintains a history of every change made to a
requirement. CaliberRM provides a simple interface to peruse the changes, right back to
original object creation.

3. Requirement Security – CaliberRM provides management of user responsibilities and
project groups. This feature will become increasing important as EA project collaboration
with VA administrations increases. The project administrator uses a separate (restricted)
application (the Framework Administrator) to manage CaliberRM users.

4. Requirement Discussions – CaliberRM provides a special tab to support data management
collaboration for each requirement (object). Users can post new comments or respond to old
ones. CaliberRM maintains and displays the discussion history in a hierarchical list.

5. Database Backup – The CaliberRM database objects are in proprietary files that the project
administrator can periodically back up or restore as required.

1.4. Referencing External Mandates

The Enterprise Architecture models the motivation that drives the Department of Veterans
Affairs in Column 6 of the Zachman Framework. The motivation exists as a set of documents
external to the architecture; these include mandates (laws, orders, etc.), strategic plans,
department policies, project plans, application designs, deployment plans, system guides, and so
on. This note describes how we identify and include the actionable mandates in the architecture.
It also provides an example of how the actionable mandates provide VA’s business requirements.

Process...Modeling...EA Repository Development

Page 8
Copyright © All rights reserved.

The example below illustrates how the Enterprise Architecture will link to the external mandate
documents required to support the models developed for Zachman Framework Row 1, Column 6
(Cell Z16).

In order to model Z16, it will be necessary to analyze hundreds of external Federal and State
laws and policies, executive orders, local ordinances, regulations, the constitution, and even
common law. However, only certain sections, paragraphs, and sentences of these mandates
require action by Veterans Affairs. Those sections must be decomposed (identified, parsed, and
paraphrased) as “actionable mandates”. Analysts will accomplish this by creating a word table
that contains every header and paragraph in the original document. They manually scan the
decomposed table for VA actionable mandates, which they name and paraphrase. Then, the
actionable mandates will be bulk loaded into CaliberRM where they will be available for

Process...Modeling...EA Repository Development

Page 9
Copyright © All rights reserved.

classification according to a predetermined taxonomy. The analyst further organizes the
actionable mandates by creating “normalized mandates” that group similar actionable mandates
(perhaps from different mandate documents) for use in the architecture as external business
requirements. Finally, for example, the analyst identifies the business function (found in
Zachman cell Z12) motivated by the normalized actionable mandate and creates a “function
point” that connects function and mandate.

An automated process will export this organized information, managed in the CaliberRM
repository, to a graphical model based on the Zachman Framework. Users will be able to scan
and query the information model (implemented with the Metis modeling tool in the first version
of this architecture). They will also be able to link from the actionable mandate to the
decomposed mandate document. Finally, they will be able to link from the decomposed mandate
to the original document, when original context is required.

The following table is an example of a decomposed mandate with identified actionable
mandates.

PUBLIC LAW 104-191 Actionable Mandate Name

"(1) A health plan.

"(2) A health care clearinghouse.

"(3) A health care provider who
transmits any health information in
electronic form in connection with
a transaction referred to in section
1173(a)(1).

"(b) REDUCTION OF
COSTS.--Any standard adopted
under this part shall be consistent
with the objective of reducing the
administrative costs of providing
and paying for health care.

Any standard adopted under
Section 1172 shall be consistent
with the objective of reducing the
administrative costs of providing
and paying for health care.

Section 1172 Reduce Costs

"(c) ROLE OF STANDARD
SETTING ORGANIZATIONS.--

"(1) IN GENERAL.--Except as
provided in paragraph (2), any

Adopt only those data
transmission standards set by

Section 1172 Adopt Specific
Organization Standards

Process...Modeling...EA Repository Development

Page 10
Copyright © All rights reserved.

standard adopted under this part
shall be a standard that has been
developed, adopted, or modified
by a standard setting organization.

standard-setting organizations

"(2) SPECIAL RULES.--

"(A) DIFFERENT
STANDARDS.--The Secretary
may adopt a standard that is
different from any standard
developed, adopted, or modified
by a standard setting organization,
if--

"(i) the different standard will
substantially reduce administrative
costs to health care providers and
health plans compared to the
alternatives; and

"(ii) the standard is promulgated in
accordance with the rulemaking
procedures of subchapter III of
chapter 5 of title 5, United States
Code.

"(B) NO STANDARD BY
STANDARD SETTING
ORGANIZATION.--If no standard
setting organization has
developed, adopted, or modified
any standard relating to a standard
that the Secretary is authorized or
required to adopt under this part--

The Secretary should approve the
use of any data transmission
standard that was not developed by
a standard-setting organization

Section 1172 Obtain Secretary
Approval

"(i) paragraph (1) shall not apply;
and

"(ii) subsection (f) shall apply.

(3) CONSULTATION
REQUIREMENT.--

Process...Modeling...EA Repository Development

Page 11
Copyright © All rights reserved.

Process...Modeling...EA Repository Development

Page 12
Copyright © All rights reserved.

	1 EA Repository Development
	1.1 EA Repository Introduction
	1.2 EA Information Capture, Management, and Delivery
	1.3 CaliberRM Mechanisms
	1.3.1 Basic Mechanisms
	1.3.2 Utilities
	1.3.3 Built-in Properties
	1.3.4 User-Extended Properties
	1.3.5 Data Management

	1.4 Referencing External Mandates

